

2000

ISOPREN® Unbewehrte Elastomerplatten

Unbewehrte Elastomerplatten ISOPREN®

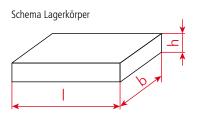
Bemessungswert der Gebrauchsgrenze

(Druckbelastung)

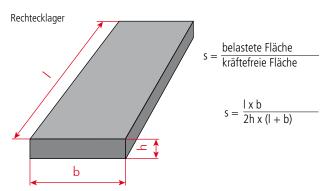
Für die zulässigen Belastungen von Elastomerbauteilen sind die Art der Belastungen, die jeweiligen chemischen und mechanischen Beanspruchungen und die Werkstoffeigenschaften, vor allem aber die Geometrie bzw. die Abmessungen des Bauteils massgebend.

Die zulässige Belastung für Elastomerfedern aus ISOPREN® ist auch abhängig von der Werkstoffqualität.

Die Formel lautet für


ISOPREN®-E1
$$\sigma D_{zul} = 1.20 \text{ x s x G} + 0.84 \text{ [N/mm}^2]$$

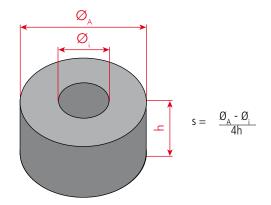
ISOPREN®-E2 $\sigma D_{zul} = 0.73 \text{ x s x G} + 0.77 \text{ [N/mm}^2]$


s: Formfaktor G: Schubmodul

Formfaktor

Körperschalldämmende Lagerungen im Bau zeigen meistens eine Rechteck-, Quadrat- oder Zylinder-Form. Bei diesen Bauteilen beeinflusst die Form das Druck-Stauchungsverhältnis mehr als die Werkstoffhärte. Daraus ergeben sich grosse Möglichkeiten für den Konstrukteur. Aus demselben Werkstoff kann er Bauteile mit sehr unterschiedlichen Federcharakteristiken entwickeln. Die zulässige Belastung, Einfederung bzw. Eigenfrequenz und damit die Dämmleistung wird durch die Bauteilform gegeben.

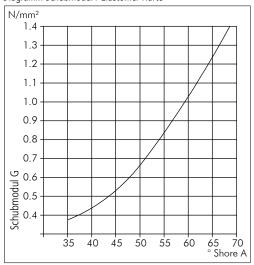
Der Formfaktor s ergibt sich aus einer Funktion der "kräftefreien Fläche" zur "belasteten Fläche". Die Bilder zeigen verschiedene Grundformen und die entsprechenden Formeln zur Berechnung von s. Wird also die "belastete Fläche" grösser, wird der Formfaktor s grösser.



 $S = \emptyset A$

Ringförmiger Lagerkörper

Kreisrunder Lagerkörper



Der Schubmodul

Als weitere wichtige Grösse gilt der Schubmodul G. Dieser wird für Elastomere durch die Werkstoffhärte H, welche in ° Shore A gemessen wird, bestimmt. Der Schubmodul G ist eine Funktion dieser Werkstoffhärte.

Diese Funktion ist im untenstehenden Diagramm aufgezeichnet, so dass der Schubmodul G, welcher für die zulässige Belastung der Werkstoffqualität des entsprechenden Produktes benötigt wird, direkt für jede Elastomerhärte abgelesen werden kann.

Diagramm Schubmodul / Elastomer-Härte

Elastomerhärte H

ISOPREN®-Platten werden aufgrund ihrer hohen Belastbarkeit meistens auf oder unter Stützen eingesetzt. Dafür kann es mehrere Gründe geben:

- 1. Zwängungskräfte sollen abgebaut werden, die Deformationsmöglichkeit der Platten wird genutzt.
- 2. Die Körperschallübertragung soll reduziert werden, die Dämmwirkung der ISOPREN®-Platten wird genutzt.
- 3. Wärmebrücken sollen gemindert werden, die schlechte Wärmeleitung von ISOPREN® wird genutzt ($\lambda = 0.20 0.25 \text{ W/mK}$).

Über die Form können (über die Funktion der freien Fläche zur gepressten Fläche) die Eigenschaften von Elastomerplatten in ihrer Funktion als Federn in einem weiten Bereich an die gestellten Anforderungen angepasst werden.

Anwendungsbeispiele ISOPREN®

Beispiel 1:

Die Auswirkung von Bauteilform und Bauteilqualität.

Fall 1:

Auflager ISOPREN®-E1

Abmessung 80 x 80 mm, Dicke h = 10 mm, Härte 65° Shore A, so ergibt sich Formfaktor s:

Schubmodul G =
$$1.20 \text{ N/mm}^2$$

 $\sigma D_{zul} = 1.20 \text{ x s x G} + 0.84 = 3.72 N/mm^2
Einfederung Δh_{eff} = 0.31 mm
Eigenfrequenz $n_{e,p}$ = $28.4 \text{ Hz}$$

$$s = {1 \times b \over 2h (l + b)} = {80 \times 80 \over 2 \times 10 (80 + 80)} = 2.00$$

Fall 2:

Verändert man die Bauteildicke von 10 auf 20 mm

Abmessung 80 x 80 mm, Dicke h = 20 mm, Härte 65° Shore A, so ergibt sich Formfaktor s:

Schubmodul G =
$$1.20 \text{ N/mm}^2$$

 $\sigma D_{zul} = 1.20 \text{ x s x G} + 0.84 = 2.28 N/mm^2
Einfederung Δh_{eff} = 1.45 mm
Eigenfrequenz $n_{e,p}$ = $13.2 \text{ Hz}$$

$$s = {1 \times b \over 2hs (l + b)} = {80 \times 80 \over 2 \times 20 (80 + 80)} = 1.00$$

Fall 3:

Das obenstehende Auflager erhält noch ein Zentrumsloch mit dem Ø 30 mm

Abmessung 80 x 80 mm, Dicke h = 20 mm, Härte 65° Shore A, so ergibt sich Formfaktor s:

$$s = \frac{(|x|b) - (r^2 x \pi)}{2h (|x|b) + (h (2r^2 x \pi))}$$

$$= \frac{(80 x 80) - (15^2 x \pi)}{2 x 20 (80 + 80) + (20 (2 x 15^2 x \pi))} = 0.69$$

Achtung:

Zulässige Belastungen, wie sie hier als Gebrauchsgrenzwerte gegeben werden, sind nur für einfache geometrische Bauteilformen wie Quader, Zylinder, Hohlzylinder und dergleichen möglich. Nur bei diesen Elementen ist die Abhängigkeit der Druckfederung von der Form (Formfaktor) einigermassen genau rechnerisch festzustellen.

Unbewehrte Elastomerplatten ISOPREN®

ISOPREN®-E1, Elastomerplatte, CR-Qualität

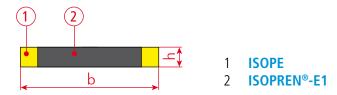
Technische Daten für ISOPREN®-E1

Internationales Kurzzeichen		CR
Härtebereich H	° Shore A	65 +/- 5
Einsatztemperatur	°C	- 30 bis + 100
Zugfestigkeit		gut
Bruchdehnung		gut
Rückprallelastizität		befriedigend
Abriebwiderstand		befriedigend
Wärmebeständigkeit		ausreichend
Benzin-, Lösungsmittelbeständigkeit		befriedigend
Mineralölbeständigkeit		befriedigend
Säuren (25%ige H ₂ SO ₄)	bei + 50 ° C	gut
Laugen (50%ige NaOH)	bei + 50 ° C	gut
Wasser	bei + 100 ° C	befriedigend
Witterung / Ozon		gut
Licht		befriedigend

Elastomerplatten

Dicke	Härte		
mm	50 – 60	60 - 70	
5.0		*	
10.0	*	*	
15.0	*	*	
20.0	*	*	
25.0	*	*	
30.0	*	*	

^{*} ab Lager lieferbar


Abmessungen und Traglasten für ISOPREN®-E1

Abmessung in mm		Traglast für Platten ohne Löcher		
maximale Länge	maximale Breite	Tragwiderstand* F _{nd} kN	Gebrauchsgrenze ¹⁾ σD ₂₁₁ N/mm ²	Gebrauchsgrenze* F _{c1} kN
1'000	1'000	X	X	X

^{*} Achtung: Der zulässige Tragwiderstand sowie die zulässige Gebrauchsgrenze sind formabhängig.

Bitte fragen Sie uns an oder nutzen Sie das Berechnungsprogramm auf unserer Homepage www.hbt-isol.com.

Zuschnitte aus den Platten werden gemäss Ihren Angaben auf der Bestellliste angefertigt.

Das Konfektionieren der Platten mit Weichschaumstoff **ISOPE** gemäss Ihren Angaben ist empfehlenswert. Siehe Zusatzangebote Seite 6.

¹⁾ Die Einfederung der Platten bei Belastung auf Gebrauchsgrenze beträgt max. 15 % der Ausgangsdicke.

Unbewehrte Elastomerplatten ISOPREN®

ISOPREN®-E2, Elastomerplatte, NR/SBR-Qualität

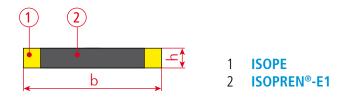
Technische Daten für ISOPREN®-E2

Internationales Kurzzeichen		NR/SBR	
Härtebereich H	° Shore A	65 +/- 5	
Einsatztemperatur	°C	- 30 bis + 100	
Zugfestigkeit		gut - sehr gut	
Bruchdehnung		gut - sehr gut	
Rückprallelastizität		gut - sehr gut	
Abriebwiderstand		gut - sehr gut	
Wärmebeständigkeit		ungünstig	
Benzin-, Lösungsmittelbeständigkeit		ungünstig - sehr ungünstig	
Mineralölbeständigkeit		ungünstig - sehr ungünstig	
Säuren (25%ige H ₂ SO ₄)	bei + 50 ° C	ausreichend	
Laugen (50%ige NaOH)	bei + 50 ° C	gut	
Wasser	bei + 100 ° C	ungünstig	
Witterung / Ozon		ausreichend	
Licht		ausreichend	

Elastomerplatten

Dicke	Härte		
mm	50 – 60	60 - 70	
2.0		*	
5.0		*	
10.0	*	*	
15.0	*	*	
20.0	*	*	
25.0	*	*	
30.0	*	*	

^{*} ab Lager lieferbar


Abmessungen und Traglasten für ISOPREN®-E2

Abmessung in mm		Traglast für Platten ohne Löcher			
	maximale	3			
Länge	Breite	F _{Rd} kN	σD_{zul} N/mm ²	F_{cd} kN	
1'000	1'000	X	X	X	

^{*} Achtung: Der zulässige Tragwiderstand sowie die zulässige Gebrauchsgrenze sind formabhängig.

Bitte fragen Sie uns an oder nutzen Sie das Berechnungsprogramm auf unserer Homepage www.hbt-isol.com.

Zuschnitte aus den Platten werden gemäss Ihren Angaben auf der Bestellliste angefertigt.

Das Konfektionieren der Platten mit Weichschaumstoff **ISOPE** gemäss Ihren Angaben ist empfehlenswert. Siehe Zusatzangebote Seite 6.

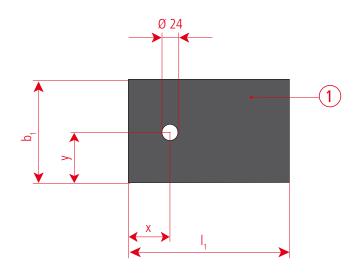
¹⁾ Die Einfederung der Platten bei Belastung auf Gebrauchsgrenze beträgt max. 15 % der Ausgangsdicke.

Zusatzangebote für ISOPREN®-E1 und ISOPREN®-E2

Bohrung

Elastomerplatten ISOPREN®-E1 und ISOPREN®-E2 können mit Bohrungen für Sicherungsdorne versehen werden. Der Durchmesser der Bohrungen beträgt einheitlich 24 mm.

Bitte Senden Sie uns zusammen mit der Bestellung die genauen Abmessungen des Lagers sowie die Werte der x- und y-Koordinaten für die Positionierung der Bohrung.


Die Bemessungswerte der Lager verändern sich durch diese Bohrungen.

Fragen Sie bei unserem Technischen Dienst an. Dort wird man Ihnen die genauen Bemessungswerte sowie Angaben zu weiteren möglichen Varianten bekannt geben.

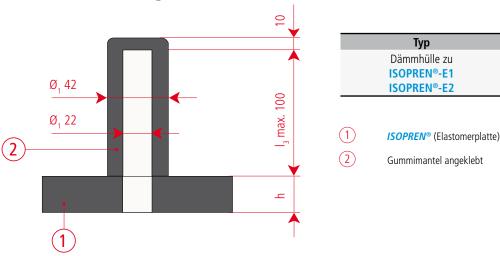
Тур	Lagerdicke h mm
	2.0*
	5.0
ISOPREN®-E1	10.0
ISOPREN®-E1	15.0
IJOI KEN -LZ	20.0
	25.0
	30.0

^{*} nur Typ E2

Grundriss mit Bezeichnung

- Randabstand der Bohrung in Längsrichtung des Lagers Randabstand der Bohrung in Querrichtung des Lagers
- ISOPREN® (Elastomerplatte)

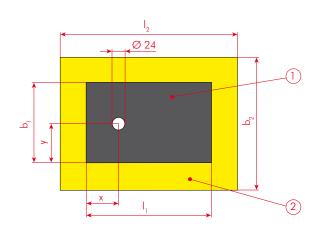
Dämmhülle für ISOPREN®-E1 und ISOPREN®-E2


Nebst den Bohrungen für das Lager können für durchdringende Dorne, welche zur Sicherung z.B. an Kopfplatten von Stahlstützen angebracht sind, spezielle, elastische Gummimäntel angefertigt und geliefert werden.

Diese Gummimäntel bestehen aus demselben Kautschukmaterial wie der Lagerkörper selbst und werden mit dem Elastomerkörper des Lagers wasserdicht verklebt.

Der innere Durchmesser des Gummimantels beträgt einheitlich 22 mm.

Die Länge I, des Gummimantels wird nach Ihren Angaben speziell gefertigt. Sie kann maximal 120 mm betragen.


Schnitt mit Bezeichnung

Konfektionierung mit Weichschaumstoff ISOPREN®-E1 und ISOPREN®-E2

Bei der Konfektionierung werden die ISOPREN®-Elastomerplatten in den Weischschaumstoff ISOPE eingebettet.

Grundriss mit Bezeichnung

Typ Konfektionierung ISOPREN®-E1 ISOPREN®-E2

- 1) ISOPREN® (Elastomerplatte)
- (2) ISOPE, Weischschaumstoff, der Lagerdicke angepasst

Referenzobjekt Westside, Bern ISOPREN®-Platten

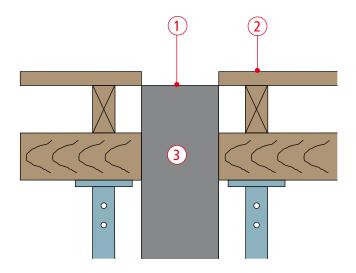
Situation

Beim Objekt Westside wurde der Bauteil «Seniorenresidenz» direkt über dem Autobahntunnel erstellt. Körperschallenergien, verursacht durch Personen- und Lastwagendurchfahrten im Tunnel, könnten innerhalb dieser Seniorenresidenz als störend wahrgenommen werden.

Lösung

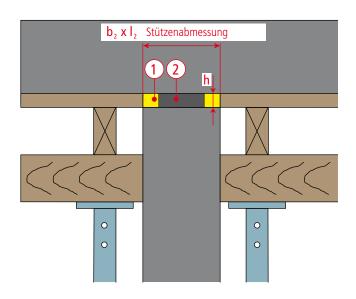

In Zusammenarbeit mit dem Akustikbüro Rutishauser in Zürich wurde eine körperschalldämmende Lagerung zwischen der Tunneldecke und dem Gebäude dimensioniert. Unter den Tragwänden und den Stützen werden die Hauptlasten mit der Elastomerfeder ISOPREN® 30 E1 abgetragen. Die genaue Dimensionierung erfolgte aufgrund von Druckprüfungen der EMPA in Dübendorf. Die restlichen Flächen wurden mit einer hochverdichteten Mineralwolle als verlorene Schalung ausgeführt.

Die sorgfältig abgedichtete Lagerung wurde armiert und mit einer Druckverteilplatte übergossen.



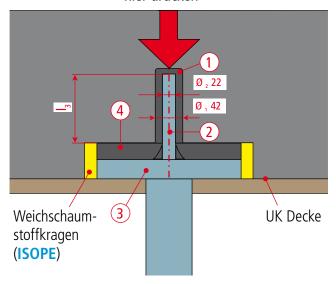
Referenzen

Referenzen			
INDUSTRIE / GEWERBE / W	OHNEN		
Bahnweg	Lausen	Gebäudelagerung	2020
Migros Oedenhof	Wittenbach	Gebäudelagerung	2019
Wohnhaus	Erlenbach	UB-Lagerung	2020
Pflegi Muri	Muri	UB-Lagerung, Wäscherei	2018
HANG-AAR	Aarau	UB-Lagerung, Gewerbegebäude	2018
Hetex-Areal	Niederlenz	UB-Lagerung	2017
Ladenlokal (Umbau)	Zürich	UB-Lagerung	2016
Wohn-/Gewerbeüberbauung	Horn	UB-Lagerung	2015
Aufstockung Mehrfamilienhaus	Crans-Montana	UB-Lagerung	2014
MASCHINENLAGERUNG			
Realta JVA	Cazis	Monoblock, HLK-Lagerung	2017
Bahnhof SBB	Basel	Maschinenlagerung, Knetmaschine	2017
Hotel Valsana	Arosa	Maschinenlagerung, Waschmaschinen	2016
SCHWIMMBAD / WHIRLPOO	DL		
EFH Reisch	Uerikon	Lagerung Schwimmbad	2017
Luegisland	Zufikon	Whirlpoollagerung	2017
Hürlimann Areal	Zürich	Lagerung Schwimmbad	2010
STRASSE UND SCHIENENVE	ERKEHR		
Seetalstrasse 41	Kreuzlingen	Kranbahnlagerung	2018
Meret-Oppenheim	Basel	Gebäudelagerung zu Tramlinie	2017
Galgenbucktunnel	Neuhausen	Tunnel, Lagerung Zwischendecke	2017
Helvetia Tower	Pratteln	Vertikal-Lagerung zu Bahnlinie	2013
TURNHALLE / TANZLOKAL /	TONSTUDIO		
Swisspor-Sportarena	Luzern	Lagerung Doppel-Turnhalle	2011
Turnhalle Shilpost	Zürich	Lagerung Turnhallenboden	2011
Tanzlokal Kronenwiese	Zürich	Bodenlagerung	2016
Hochschule	Luzern	Lagerung Tonstudios	2015


Einbauanleitung für ISOPREN®-Platten

1. Einbau auf Betonstützen

Der Stützenkopf muss genau horizontal abgezogen werden. Die Toleranz der Oberflächengenauigkeit beträgt \pm 1 mm aus der Ebene. Die Mindestdruckfestigkeit der Oberfläche soll 15 N/mm² betragen.


OK Stützenkopf = UK Decke minus Lagerdicke h

Die **ISOPREN®**-Platte (2) wird auf das ausgehärtete Auflager trocken verlegt. Es darf weder mit Schalungsöl noch mit anderen Trennmitteln besprüht werden.

Wird die Decke in Ortbeton ausgeführt, ist die **ISOPREN®**-Platte mit einem allseitigen Schaumstoffkragen (1) zu versehen. Seine Aussenabmessung entspricht der Stützenabmessung. Klaffende Fugen zur Schalung sind mit Betonklebeband wasserdicht zu verkleben. Seitliche Betonbrauen, welche die Bewegungen der Decke behindern könnten, müssen nach dem Ausschalen entfernt werden.

2. Einbau auf Stahlstützen

Die **ISOPREN**®-Platte (4) wird auf die ebene, fettfreie, trockene Kopfplatte der Stahlstütze (3) aufgesetzt. In der Regel gilt UK Decke = UK Kopfplatte.

Das Aufsetzen der **ISOPREN®**-Platte erfolgt durch Drücken des Gummimantels über den Dorn (1). Es ist empfehlenswert, die Innenseite des Gummimantels vor dem Versetzen leicht einzufetten.

Die Länge (L₃) und die Koordinaten (x und y) des Sicherungsdornes (2) sind bei der Bestellung der **ISOPREN®**-Platte immer auf der Vorderseite der Bestell-Liste einzutragen.

Fachkompetenz für Ihr Bauprojekt

Die innovativen Schallschutzlösungen von HBT-ISOL schützen Gebäude, Gebäudenutzer und Bewohner vor internem und externem Schall und Vibrationen.

- Schutz für Menschen und Gebäude vor Störenergien aus Schienenverkehr
- Wirksame D\u00e4mmung von K\u00f6rperschall bei Mischnutzungen, wie z.B. Wohnen-Einkaufen, B\u00fcros-Gewerbe, Turnen \u00fcber Schulr\u00e4umen usw.
- Trittschalldämmung in Treppenhäusern, bei Laubengängen und Balkonen
- Vibrations- und Schwingungsdämmung für haustechnische Anlagen
- Rissminderung und Schalldämmung zwischen Wänden und Decken
- Körperschalldämmende Befestigungen und Sicherungen aller Arten
- Erschütterungsschutz für Produktionsanlagen

Erstklassige Produkte, langjährige Erfahrung und personalisierte Begleitung von der Konzeption bis zur Ausführung, garantieren Bauherren, Bauplanern und Bauausführenden Wirtschaftlichkeit sowie technische Sicherheit.

Körperschalldämmung und Trittschallminderung ISOPREN® Unbewehrte Elastomerplatten

HBT-ISOL AG Im Stetterfeld 3

5608 Stetten T +41 56 648 41 11 www.hbt-isol.com info@hbt-isol.com HBT-ISOL SA
Rue Galilée 6 (CEI 3)

1400 Yverdon-les-Bains
T +41 24 425 20 46
www.hbt-isol.com
yverdon@hbt-isol.com

